Unlocking the walk matrix of a graph

نویسندگان

چکیده

Let G be a graph of order n, with vertex set $$V=\{v_{1},\dots ,v_{n}\}$$ and adjacency matrix A. For non-empty S vertices let $$\mathrm{e}=(x_{1}, \dots , x_{n})^\mathtt{T}$$ the characteristic vector S, that is, $$x_{\ell }=1$$ if $$v_{\ell }\in S$$ }=0$$ otherwise. Then $$n\times n$$ $$\begin{aligned} W^{S}:=\big [{\mathrm{e}}, A{\mathrm{e}}, A^{2}{\mathrm{e}},\dots ,A^{n-1}{\mathrm{e}}\big ] \end{aligned}$$ is walk for S. This term refers to fact in $$W^{S}$$ $$k{\mathrm{th}}$$ entry row corresponding }$$ number walks length $$k-1$$ from some $$\mu _{1},\dots \mu _{s}$$ distinct eigenvalues given $$\mathrm{e}$$ we re-arrange these such way 1 {\mathrm{SD}}(S)\!:\mathrm{e}=\mathrm{e}_{1}+\mathrm{e}_{2}+\dots +\mathrm{e}_{r} certain $$r\le s,$$ where $$\mathrm{e}_{i}$$ are eigenvectors A eigenvalue _{i},$$ all $$1\le i\le r.$$ We refer (1) as spectral decomposition or more properly, its $$\mathrm{e}.$$ show determines vice versa. Explicit algorithms which establish this correspondence. In particular, r appear equal rank $$W^{S}.$$ Various results can derived theorem. has $$\ge n-1.$$ Another application n-1,$$ then another $$G^{*}$$ on V isomorphic only there $$S^{*}\subseteq V$$ so same $$W^{S^{*}}\!,$$ up reordering rows . The assumption two theorems met by almost graphs when $$S=V,$$ it known $${\mathrm{rank}}(W^{V})=n$$ graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Clustering by Nonnegative Matrix Factorization Using Graph Random Walk

Nonnegative Matrix Factorization (NMF) is a promising relaxation technique for clustering analysis. However, conventional NMF methods that directly approximate the pairwise similarities using the least square error often yield mediocre performance for data in curved manifolds because they can capture only the immediate similarities between data samples. Here we propose a new NMF clustering meth...

متن کامل

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Graph Matrix Completion in Presence of Outliers

Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...

متن کامل

On the diameter of the commuting graph of the full matrix ring over the real numbers

‎In a recent paper C‎. ‎Miguel proved that the diameter of the commuting graph of the matrix ring $mathrm{M}_n(mathbb{R})$ is equal to $4$ if either $n=3$ or $ngeq5$‎. ‎But the case $n=4$ remained open‎, ‎since the diameter could be $4$ or $5$‎. ‎In this work we close the problem showing that also in this case the diameter is $4$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Combinatorics

سال: 2021

ISSN: ['0925-9899', '1572-9192']

DOI: https://doi.org/10.1007/s10801-021-01065-3